organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,1'-[(1*E*,11*E*)-5,8-Dioxa-2,11-diazoniadodeca-1,11-diene-1,12-diyl]dinaphthalen-2-olate

Yanju Liu,^a Kai Liu,^b Zhiqiang Cao^c and Meiju Niu^c*

^aState Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China, ^bDongchang College, Liaocheng University, Shandong 252059, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: niumeiju@163.com

Received 22 March 2011; accepted 1 April 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; *R* factor = 0.068; *wR* factor = 0.224; data-to-parameter ratio = 13.3.

The title compound, $C_{28}H_{28}N_2O_4$, crystallizes in a zwitterionic form with deprotonated naphthol hydroxy groups and protonated imine N atoms. The asymmetric unit contains one half-molecule located on a twofold rotation axis. Intramolecular N-H···O hydrogen bonds occur and the two bicyclic ring systems form a dihedral angle of 64.2 (1)°. In the crystal, weak intermolecular C-H···O hydrogen bonds link the molecules into layers parallel to the *bc* plane.

Related literature

For applications of Schiff bases in coordination chemistry, see: Osowle (2008). For related structures, see: Etemadi *et al.* (2004); Liu *et al.* (2010); Farag *et al.* (2010; 2011).

Experimental

Crystal data

$C_{28}H_{28}N_2O_4$	$V = 2332.6 (4) \text{ Å}^3$
$M_r = 456.52$	Z = 4
Orthorhombic, Pcca	Mo $K\alpha$ radiation
a = 44.704 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 6.3576 (6) Å	T = 298 K
c = 8.2074 (9) Å	$0.50 \times 0.37 \times 0.11 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer9099 measured reflectionsAbsorption correction: multi-scan2060 independent reflections(SADABS; Bruker, 2009) $R_{int} = 0.081$ $T_{min} = 0.958, T_{max} = 0.991$ $R_{int} = 0.081$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.068$	155 parameters
$wR(F^2) = 0.224$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
2060 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

	$\cdot \cdot A$
N1-H1 $A\cdots$ O10.861.852.542 (5)136C14-H14 $B\cdots$ O2 ⁱ 0.972.583.382 (5)141C12-H12 $B\cdots$ O1 ⁱⁱ 0.972.503.257 (5)134	

Symmetry codes: (i) $x, -y + 1, z + \frac{1}{2}$; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5066).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Etemadi, B., Taeb, A., Sharghi, H., Tajarodi, A. & Naeimi, H. (2004). Iran. J. Sci. Technol. Trans. A, 28, 79–83.
- Farag, A. M., Teoh, S. G., Osman, H., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, 01227–01228.
- Farag, A. M., Teoh, S. G., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, 0143.
- Liu, X.-Y., Fan, Y.-H., Wang, Q., Bi, C.-F. & Wang, Y.-F. (2010). Acta Cryst. E66, 0309.

Osowle, A. A. (2008). Eur. J. Chem. 5, 130-135.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o1074 [doi:10.1107/S1600536811012219]

1,1'-[(1E,11E)-5,8-Dioxa-2,11-diazoniadodeca-1,11-diene-1,12-diyl]dinaphthalen-2-olate

Y. Liu, K. Liu, Z. Cao and M. Niu

Comment

Schiff bases have various applications in coordination chemistry (Osowle, 2008). Herewith we present the title compound (I), which is a new crowned Schiff base.

In (I) (Fig. 1), all bond lengths and angles are usual and comparable with those observed in the related compounds (Etemadi *et al.*, 2004; Liu *et al.*, 2010; Farag *et al.*, 2010, 2011). Each molecule is situated on a twofold rotational axis. Intramolecular N—H···O hydrogen bonds (Table 1) influence the molecular conformation - two bicycles form a dihedral angle of 64.2 (1)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into layers parallel to *bc* plane.

Experimental

The title compound was synthesized by adding drop-wise a solution of 3,6-dioxa-1,8-diaminooctane (1.48 g,10 mmol) in absolute methanol (10 mL) to a methanol solution (20 mL) of 2-hydroxy-1-naphthaldehyde (3.4438 g,20 mmol) under stirring at room temperature. The resultant reaction mixture was then refluxed for 5 h, cooled and concentrated under reduced pressure, and then the residue was retained at -268 K for overnight. The bright yellow crystal which suitable for X-ray analysis was formed, filtered and dried under reduced pressure.Yield:82%. Analysis found: C 73.07, H 6.06, N 6.51%; calculated for $C_{28}H_{28}N_2O_4$ (Mr=456.54): C 73.66, H 6.18, N 6.14%.

Refinement

C-bound H atoms were geometrically positioned [C—H 0.93–0.97 Å]. Atom H1A was located on a difference map, but placed in idealized position [N—H 0.86 Å]. All H atoms were refined as riding atoms, with $U_{iso}(H) = 1.2-1.5 U_{iso}$ of the parent atom.

Figures

Fig. 1. The molecular structure of (I) showing the atomic labels and 30% probability displacement ellipsoids. Symmetry code: (A) -x + 1/2, -y + 1, z.

1,1'-[(1E,11E)-5,8-Dioxa-2,11-diazoniadodeca-1,11-diene-\ 1,12-diyl]dinaphthalen-2-olate

Crystal data

C ₂₈ H ₂₈ N ₂ O ₄	
$M_r = 456.52$	
Orthorhombic, Pcca	

F(000) = 968 $D_x = 1.300 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2a 2ac a = 44.704 (4) Å b = 6.3576 (6) Å c = 8.2074 (9) Å $V = 2332.6 (4) \text{ Å}^3$ Z = 4

D

Data collection	
Bruker SMART APEX CCD area-detector diffractometer	2060 indepe
Radiation source: fine-focus sealed tube	1162 reflect
graphite	$R_{\rm int} = 0.081$
phi and ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2009)	$h = -53 \rightarrow 23$
$T_{\min} = 0.958, T_{\max} = 0.991$	$k = -7 \rightarrow 7$
9099 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.068$	H-atom parameters constrained
$wR(F^2) = 0.224$	$w = 1/[\sigma^2(F_o^2) + (0.088P)^2 + 3.8548P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2060 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
155 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Extinction coefficient: 0.0055 (16) methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.16369 (7)	0.4462 (5)	0.0795 (4)	0.0479 (10)
H1A	0.1720	0.5537	0.1239	0.058*
C2	0.11853 (8)	0.6454 (6)	0.0728 (5)	0.0370 (9)
01	0.15974 (7)	0.8123 (5)	0.2021 (4)	0.0628 (10)
O2	0.22075 (6)	0.4082 (5)	0.2116 (4)	0.0541 (9)
C11	0.08741 (8)	0.6581 (6)	0.0253 (5)	0.0388 (10)
C1	0.13580 (8)	0.4646 (6)	0.0400 (5)	0.0402 (10)
H1	0.1266	0.3525	-0.0129	0.048*
C6	0.07056 (9)	0.8373 (6)	0.0703 (5)	0.0464 (11)
C3	0.13216 (10)	0.8124 (6)	0.1618 (5)	0.0463 (11)

Cell parameters from 1398 reflections $\theta = 2.7 - 22.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 KBlock, yellow $0.50 \times 0.37 \times 0.11 \text{ mm}$

endent reflections tions with $I > 2\sigma(I)$ °, $\theta_{\min} = 1.8^{\circ}$ 8

C10	0.07267 (8)	0.5045 (7)	-0.0672 (5)	0.0469 (11)
H10	0.0832	0.3861	-0.1007	0.056*
C12	0.18209 (9)	0.2620 (7)	0.0560 (6)	0.0505 (12)
H12A	0.1941	0.2793	-0.0415	0.061*
H12B	0.1694	0.1397	0.0410	0.061*
C4	0.11373 (10)	0.9880 (7)	0.2060 (6)	0.0557 (12)
H4	0.1220	1.0978	0.2657	0.067*
C5	0.08502 (10)	0.9976 (7)	0.1636 (5)	0.0550 (12)
H5	0.0739	1.1138	0.1962	0.066*
C8	0.02674 (10)	0.6990 (9)	-0.0632 (6)	0.0650 (14)
H8	0.0067	0.7120	-0.0922	0.078*
C7	0.04054 (10)	0.8504 (8)	0.0252 (6)	0.0572 (13)
H7	0.0296	0.9677	0.0571	0.069*
C9	0.04327 (9)	0.5238 (8)	-0.1096 (6)	0.0553 (12)
Н9	0.0342	0.4182	-0.1703	0.066*
C13	0.20210 (9)	0.2282 (7)	0.1994 (6)	0.0566 (13)
H13A	0.1903	0.2115	0.2979	0.068*
H13B	0.2141	0.1027	0.1840	0.068*
C14	0.24105 (8)	0.4015 (7)	0.3430 (5)	0.0507 (12)
H14A	0.2542	0.2808	0.3319	0.061*
H14B	0.2302	0.3884	0.4449	0.061*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0378 (17)	0.048 (2)	0.059 (2)	-0.0032 (15)	-0.0074 (17)	0.0003 (19)
C2	0.041 (2)	0.035 (2)	0.035 (2)	-0.0033 (17)	-0.0019 (18)	0.0031 (18)
01	0.066 (2)	0.0485 (19)	0.074 (2)	-0.0125 (15)	-0.0256 (18)	0.0002 (17)
02	0.0413 (15)	0.064 (2)	0.057 (2)	-0.0092 (14)	-0.0097 (14)	0.0128 (16)
C11	0.042 (2)	0.042 (2)	0.032 (2)	0.0007 (18)	0.0030 (18)	0.0051 (19)
C1	0.039 (2)	0.042 (2)	0.040 (2)	-0.0059 (17)	-0.0017 (19)	0.0059 (19)
C6	0.054 (2)	0.043 (2)	0.043 (3)	0.000 (2)	0.007 (2)	0.004 (2)
C3	0.059 (3)	0.037 (2)	0.043 (3)	-0.006 (2)	-0.005 (2)	0.004 (2)
C10	0.043 (2)	0.050 (2)	0.049 (3)	-0.003 (2)	-0.004 (2)	-0.003 (2)
C12	0.040 (2)	0.054 (3)	0.057 (3)	0.000(2)	-0.003 (2)	-0.003 (2)
C4	0.081 (3)	0.041 (2)	0.046 (3)	-0.011 (3)	-0.004 (3)	-0.002 (2)
C5	0.074 (3)	0.043 (3)	0.049 (3)	0.006 (2)	0.006 (2)	0.001 (2)
C8	0.040 (2)	0.091 (4)	0.064 (3)	0.005 (3)	-0.001 (2)	0.001 (3)
C7	0.052 (3)	0.061 (3)	0.059 (3)	0.017 (2)	0.008 (2)	0.005 (3)
С9	0.045 (2)	0.068 (3)	0.053 (3)	-0.001 (2)	-0.006 (2)	-0.005 (3)
C13	0.047 (2)	0.054 (3)	0.069 (3)	0.000 (2)	-0.011 (2)	0.004 (3)
C14	0.044 (2)	0.067 (3)	0.042 (3)	0.004 (2)	-0.003 (2)	0.005 (2)

Geometric parameters (Å, °)

N1—C1	1.294 (4)	C12—C13	1.494 (6)
N1—C12	1.444 (5)	C12—H12A	0.9700
N1—H1A	0.8600	C12—H12B	0.9700
C2—C1	1.410 (5)	C4—C5	1.331 (6)

supplementary materials

C_{2} C_{3}	1 426 (5)	C4—H4	0.9300
$C_2 - C_1$	1 447 (5)	С5—Н5	0.9300
01-03	1 276 (5)	C8-C7	1 354 (7)
02-014	1.270(5) 1 410(5)	C_{8}	1.390 (6)
02 - C13	1.420 (5)	C8—H8	0.9300
$C_{11} - C_{10}$	1.420(5)	C7H7	0.9300
C11-C6	1.402(5)	C9_H9	0.9300
C1 H1	0.0300	C12 H12A	0.9300
C6 C7	1 394 (6)	C13—H13R	0.9700
C0C7	1.394 (0)		1.49((9)
C6—C5	1.429 (6)	C14—C14 ⁴	1.486 (8)
C3—C4	1.434 (6)	CI4—HI4A	0.9700
00-09	1.365 (5)	С14—Н14В	0.9700
C10—H10	0.9300		
C1—N1—C12	126.1 (4)	C5—C4—C3	121.6 (4)
C1—N1—H1A	117.0	С5—С4—Н4	119.2
C12—N1—H1A	117.0	C3—C4—H4	119.2
C1—C2—C3	118.1 (3)	C4—C5—C6	122.9 (4)
C1—C2—C11	121.4 (3)	С4—С5—Н5	118.6
C3—C2—C11	120.5 (4)	С6—С5—Н5	118.6
C14—O2—C13	114.1 (3)	С7—С8—С9	118.3 (4)
C10-C11-C6	116.9 (4)	С7—С8—Н8	120.8
C10-C11-C2	124.0 (4)	С9—С8—Н8	120.8
C6—C11—C2	119.1 (4)	C8—C7—C6	122.6 (4)
N1—C1—C2	123.6 (4)	С8—С7—Н7	118.7
N1—C1—H1	118.2	С6—С7—Н7	118.7
C2—C1—H1	118.2	C10—C9—C8	120.9 (5)
C7—C6—C11	119.4 (4)	С10—С9—Н9	119.5
C7—C6—C5	122.3 (4)	С8—С9—Н9	119.5
C11—C6—C5	118.2 (4)	O2-C13-C12	106.9 (4)
O1—C3—C2	123.1 (4)	O2-C13-H13A	110.3
O1—C3—C4	119.3 (4)	С12—С13—Н13А	110.3
C2—C3—C4	117.6 (4)	O2-C13-H13B	110.3
C9—C10—C11	121.9 (4)	С12—С13—Н13В	110.3
C9—C10—H10	119.1	H13A—C13—H13B	108.6
C11-C10-H10	119.1	O2-C14-C14 ⁱ	108.7 (3)
N1—C12—C13	110.7 (4)	O2—C14—H14A	109.9
N1—C12—H12A	109 5	$C14^{i}$ $C14$ $H14A$	109 9
C_{13} C_{12} H_{12}	109.5	Ω^2 — Ω^1 4—H14B	109.9
N1 C12 H12R	109.5		109.9
	109.5		109.9
CI3-CI2-HI2B	109.5	H14A—C14—H14B	108.3
H12A—C12—H12B	108.1		
C1—C2—C11—C10	-5.6 (6)	C2-C11-C10-C9	-179.8 (4)
C3—C2—C11—C10	177.6 (4)	C1—N1—C12—C13	-140.1 (4)
C1—C2—C11—C6	175.9 (4)	O1—C3—C4—C5	178.5 (4)
C3—C2—C11—C6	-0.9 (6)	C2—C3—C4—C5	-1.1 (7)
C12—N1—C1—C2	177.0 (4)	C3—C4—C5—C6	-0.8 (7)
C3—C2—C1—N1	-3.4 (6)	C7—C6—C5—C4	-179.3 (5)
C11—C2—C1—N1	179.8 (4)	C11—C6—C5—C4	1.8 (7)

C10-C11-C6-C7	1.5 (6)	C9—C8—C7—C6	0.3 (7)
C2-C11-C6-C7	-179.9 (4)	C11—C6—C7—C8	-1.1 (7)
C10-C11-C6-C5	-179.5 (4)	C5—C6—C7—C8	180.0 (4)
C2-C11-C6-C5	-0.9 (6)	C11—C10—C9—C8	0.5 (7)
C1—C2—C3—O1	5.5 (6)	C7—C8—C9—C10	0.0 (7)
C11—C2—C3—O1	-177.7 (4)	C14—O2—C13—C12	179.6 (3)
C1—C2—C3—C4	-175.0 (4)	N1-C12-C13-O2	-61.2 (5)
C11—C2—C3—C4	1.8 (6)	C13—O2—C14—C14 ⁱ	-179.5 (4)
C6—C11—C10—C9	-1.3 (6)		
Symmetry codes: (i) $-x+1/2$, $-y+1$, z.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A…O1	0.86	1.85	2.542 (5)	136
C14—H14B···O2 ⁱⁱ	0.97	2.58	3.382 (5)	141
C12—H12B···O1 ⁱⁱⁱ	0.97	2.50	3.257 (5)	134
Symmetry codes: (ii) <i>x</i> , – <i>y</i> +1, <i>z</i> +1/2; (iii) <i>x</i> , <i>y</i> –1, <i>z</i> .				

Fig. 1

